SC6.1.12 Standard Drawings

Council’s standard drawings are contained in this section. All other referenced standard drawings can be obtained from the relevant organisation.

<table>
<thead>
<tr>
<th>Drawing Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-01</td>
<td>Kerb and Channel, Profiles and Dimensions, Including Edge Restraints, Median and Invert</td>
</tr>
<tr>
<td>R-03</td>
<td>Invert Cross Over, Driveway Slab or Tracks, Dwelling House Type</td>
</tr>
<tr>
<td>R-05</td>
<td>Invert Cross Over, Concrete Driveway, Commercial Type</td>
</tr>
<tr>
<td>R-06</td>
<td>Drainage Pits, Kerb Inlet – Lip in Line, Installation Details</td>
</tr>
<tr>
<td>R-07</td>
<td>Rural Road, Type Cross Section</td>
</tr>
<tr>
<td>R-08</td>
<td>Public Utilities, Typical Service Corridors and Alignments</td>
</tr>
<tr>
<td>R-09</td>
<td>Urban Street, Type Cross Section, Concrete Footpath Details</td>
</tr>
<tr>
<td>R-11</td>
<td>Typical Field Inlet, Cast Insitu, for ≤ 300 dia Pipes</td>
</tr>
<tr>
<td>R-14</td>
<td>Buried Flexible pipelines, Under Roads</td>
</tr>
<tr>
<td>R-15</td>
<td>Table Drain Crossing with Vehicular Access</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>R-01</td>
<td>KERB AND CHANNEL, PROFILES AND DIMENSIONS, INCLUDING EDGE RESTRAINTS, MEDIAN AND INVERT.</td>
</tr>
<tr>
<td>R-03</td>
<td>INVERT CROSS OVER, DRIVEWAY SLAB OR TRACKS, DWELLING HOUSE TYPE.</td>
</tr>
<tr>
<td>R-05</td>
<td>INVERT CROSS OVER, CONCRETE DRIVEWAY, COMMERCIAL TYPE.</td>
</tr>
<tr>
<td>R-06</td>
<td>DRAINAGE PITS, KERB INLET – LIP IN LINE, INSTALLATION DETAILS.</td>
</tr>
<tr>
<td>R-07</td>
<td>RURAL ROAD, TYPE CROSS SECTION.</td>
</tr>
<tr>
<td>R-08</td>
<td>FOOTPATH ALLOCATION, TYPICAL SERVICE CORRIDORS AND ALIGNMENTS.</td>
</tr>
<tr>
<td>R-09</td>
<td>URBAN STREET, TYPE CROSS SECTION, CONCRETE FOOTPATH DETAILS.</td>
</tr>
<tr>
<td>R-14</td>
<td>BURIED FLEXIBLE PIPELINES, UNDER ROADS.</td>
</tr>
<tr>
<td>R-15</td>
<td>TABLE DRAIN CROSSING, WITH VEHICULAR ACCESS.</td>
</tr>
</tbody>
</table>
150mm wide min. concrete edge restraint poured prior to laying pavers with 2 No 12mm bars.

NOTES:
1. $W = 3.0\text{m}$ min and 6.0m max.
2. Minimum concrete 28 day compressive strength 32MPa.
3. Scribe shrinkage joints at minimum 1.5m spacing in concrete tracks.
4. Paver may be, 60mm min dentated interlocking concrete pavers, or 75mm min rectangular concrete pavers, or 75mm min clay brick pavers.
5. Paving shall be to a smooth profile with edges matching adjacent surfaces.
6. Pavers shall comply with relevant Australian Standards and shall be constructed to achieve maximum interlock.
7. For the purpose of this drawing only, a "dwelling house" includes a duplex residential unit and up to a four unit residential development.
8. For up to a four unit development a dwelling house type driveway suitable subject to 2.1m min dimension being increased to 4.5m min.
9. 125mm min, thickness applies to structural depth only. Aesthetic treatments are extra depth.
10. For corner allotments, dwelling house invert crossover is to be located on street frontage with lowest order of traffic as per AS2890.1.
11. Where approved, dwelling house type invert cross over may be deleted for mountable type kerb and channel. Type M3, M4, M5 & M6.
12. Driveways must achieve a high point of 250mm above invert of kerb to ensure stormwater is contained within road reserve as per requirement of QLDM (Queensland Urban Drainage Manual). This constraint may be varied upon approval from Council Engineer.
NOTES:

1. Minimum concrete 28 day compressive strength shall be 32MPa.
2. Reinforcing fabric shall be fully lap jointed.
3. Depths of concrete and reinforcing steel shown are the minimum requirements for good foundation conditions and average traffic loading. Where this does not apply depths of concrete and reinforcing shall be increased accordingly.
4. Dimension 'W' shall be to Council approval.
5. Where development approved does not require access onto property by garbage truck, or similar heavy vehicle, slab thickness may be reduced to 125mm. For sole use of car use, slab thickness may be reduced to 125mm.
6. ****Driveways must achieve a high point of 250mm above invert of kerb to ensure stormwater is contained within road reserve as per requirement of QUDM (Queensland Urban Drainage Manual). This constraint may be varied upon approval from Council Engineer.

NOTE:

* - For commercial use with car traffic, solely, dimension can be reduced to 1.0m (W + 2.0m along channel).
NOTES:
1. Precast inlet units to be 2.4m or 3.6m Channel lip in line profile, in accordance with DMR Std Dwg No. 1443 & 1444.
2. Pit reference point/setout point is geometric centre of chamber.
3. Pipe ends to be trimmed flush with internal wall and repaired so as to provide required cover to pipe reinforcing.
4. Cut surfaces of concrete drainage components shall be given two coats of a x epoxy point.
5. Precast RC shafts to be used for depths (lip of channel to invert of pit) greater than 0.9m.
6. The plan of the top of pit is to be constructed as follows:
 A. Level when measured at right angles to the line of the lip of channel.
 B. To the same grade as the lip of channel when measured parallel to the line of the lip of channel.

PLAN – PRECAST INLET UNIT
(with 1050 RCP shaft)

PLAN – PRECAST INLET UNIT
(with 900x900 insitu pit)

SECTIONAL ELEVATION

150thk concrete base (min) 32 MPa/20mm Agg.

SECTIONAL ELEVATION

150thk concrete base (min) 32 MPa/20mm Agg.

PRECAST INLET UNIT CONFIGURATION

2. Two lane - typical section

NOTES:
1. Pavement depth to be determined following in situ subgrade testing.
2. For curve widening and super-elevation, refer to Austroads.
3. Carriageway width is determined on the annual average daily traffic (estimated)
 - For AADT < 400, W = 7.00m
 - For 400 < AADT < 2000, W = 8.00m
 - For AADT > 2000, W = 9.00m
4. Single lane cross section generally not applicable in developments.
TYPICAL SECTION

NOTES:
1. Where Water, & Electricity / Telecommunications permitted on same side, adopt a 2.3m offset from property bdy for Water and 0.5m offset for Electricity / Telecommunications.
32MPa concrete footpath 100mm thick on 25mm sand bedding (or level surface) SL62 mesh central & control joints at 2.6m centres and expansion joints at 15.8m centres.

TYPICAL SECTION

NOTES:
1. 3.0m absolute min width may be approved where circumstances dictate, eg. head of cul-de-sacs, CBD areas etc. Power pole alignment to be negotiated by proponent in such circumstances.
2. 1.5m wide footpath to be used at Cooloola Coast, Rural Townships, Commercial Areas and wherever conditioned.
3. Where > 1.2m footpath stipulated, pathway to meander around power pole/streetlight post at 10.0m radius.
4. Path to meander such that edge is 1.0m clear of centre of trees.
5. Expansion and control joints to be sealed with a low modulus self priming sealant to the manufacturers specifications. The colour of the sealant is to match the adjoining surface finish.

PATHWAY WIDENING/JOINING
(Minimum widening 800mm)

DOWELLED EXPANSION JOINT DETAIL (EJ)

CONTROL JOINT (CJ) EXPANSION JOINT (EJ)

Sealant refer to note

Greased dowel with expansion cap

Saw cut 1/3 depth 6mm width, seal in sandy areas

Saw cut 4 to 12 hours after laying depending on conditions

Asphalt (30mm)

Pavement (250mm min)

Trench fill zone
(stabilised sand or pavement material),
100 min or delete in favour of additional
Embedment material

Embedment material
(course sand/crusher dust)

TYPICAL SECTION

<table>
<thead>
<tr>
<th>Pipe Dia (D)</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>150–300</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>375–450</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>525–900</td>
<td>300</td>
<td>150</td>
</tr>
</tbody>
</table>

Notes:

Sand	Sieve size (mm)	% Passing		Crusher Dust	Sieve size (mm)	% Passing
------	-----------------	-----------		----------------	-----------------	-----------
	4.75	100		9.5	100	
	2.36	100–90		6.7	85–100	
	1.18	85–100		2.36	0–20	
	0.60	70–100		0.075	0–2	
	0.30	50–100				
	0.15	0–40				
	0.075	0–5				

to AS2758.1

1. To be installed in accordance with AS2566.1.
2. Backfilling Under Roads
 - All unbound gravel & select fill to be compacted to 100% Std compaction to AS1289.5.2.1
 - All cement treated material to be compacted to 100% Std compaction to AS1289.5.2.1
 - All material to be compacted in 100mm layers
 - All cement stabilised material to have a 4% min cement by dry weight.
Pipe:

Legend:
- R.C pipe (refer note 5) min. length 4.88m
- Road edge guide post
- Property boundary
- Table drain inverts
- For surface type, refer to note 9 & 10

GUIDELINES FOR MINIMUM SIGHT DISTANCE FOR ACCESS TO COUNCIL ROADS

<table>
<thead>
<tr>
<th>Design Speed (km/h)</th>
<th>Major Rural Roads</th>
<th>Minor Rural Roads (Collector, Distributor and Rust Local Roads)</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>130</td>
<td>130</td>
</tr>
</tbody>
</table>

NOTES:
1. Access pipe crossings to be provided at locations approved by Council.
2. Site distances are as per WSC Minutes No 221/6/90. The sight distance is to be measured from a point 3.0m back from the bitumen edge or edge line (sealed roadway) or the edge of formation (unsealed roadway) and 1.15m above finished surface level to a point 1.05m above pavement level in the centre of the traffic lane.
3. The Engineer shall determine the appropriate 85th percentile speed (design speed) for the road and may require sight distance in excess of the above, particularly where heavy vehicles will use the access.
4. Provide stone, grouted gravel or concrete protection to table drains & outlets where prone to erode.
5. Minimum grade through pipe/culvert to be 0.6%.
6. Provide stone edge guide posts to be located at pipe ends.
7. R.C or IRC pipe class 2 to be in accordance with the current Australian Standards, min size of dia. 300mm.
8. No pipe culvert is required where property is lower than the road, i.e. embankment or fill better.
9. All crossings for Emaux should be subject to the approval of Council Engineer.
10. Design speed shall be reduced by 25%.
11. Inlet kerb profile Type 2 may be used at Cooloora Cove, where directed.
12. Box culvert to be sized to match RCP equivalent draining capacity.

END ELEVATION

Cut-off wall 0.3m min deep (refer note 13)
Create low point to allow larger storm events to enter water without affecting the main road.

SECTION

ALTERNATIVE CROSSING TYPE A

Box culvert to be sized to match RCP equivalent draining capacity

ALTERNATIVE CROSSING TYPE B

150mm thick 32MPa concrete with SL72 mesh where approved by Council Engineer.